Establishing Composite Steel-Frame Performance Standards Using CLT Floor Panels

Kadir Sener
Assistant Professor, Auburn University
Establishing Composite Steel-Frame Performance Standards Using CLT Floor Panels

PIs: Drs. Kadir Sener and David Roueche (Auburn Univ.)

Co-PI: Dr. Brian Via (Auburn Univ.), Prof. David Kennedy (U. Arkansas)

Students: Hugh Merryday, Emma Rohde, and Megan Potuzak (AU)
Introduction: Mass Timber Use

- IBC 2021 has enabled the use of timber for buildings up to 18 stories, opening up new markets for mass-timber usage
 - Type IV-A (up to 18 stories)
 - Type IV-B (up to 12 stories)
 - Type IV-C (up to 9 stories)

- Mass-timber is widely used as framing (beam, column), walls, and floor systems

- Guidance for mass-timber usage exist for strength (gravity, lateral load) and special design considerations (vibration, acoustic, fire, outdoor use, etc.)
Introduction: Steel-Timber Buildings

• Steel structures currently use concrete for flooring systems, which accounts for about 60–70% of the total material quantity

• Numerous advantages exist when concrete floors are replaced with CLT panels
 ◦ Improved Sustainability
 ◦ Reduced Weight
 ◦ Faster and More Efficient Constructability
 ◦ Repair/Maintenance
 ◦ Structural performance
 ◦ End-of-life repurposing

© Council on Tall Buildings and Urban Habitat
Motivation: Hybrid vs. Composite

- Limited guidance exists for designing steel-timber floor systems,
- No guidance exists for composite steel-timber floor members due to lack of experimental research to demonstrate the structural behavior,
- Comparative construction cost, speed, and LCA studies are needed to highlight the advantages of steel-timber composite systems against the current state of practice of using concrete floor systems.
Objective and Research Needs

Objective

The goal of the research project is to facilitate the development of experimentally validated design-detailing configurations and establish consensus design specifications to open up new markets for mass timber CLT panels in the commercial building industry.

Research Tasks:

• Demonstrate Structural Performance
• Conduct Comparative Constructability Studies
• Conduct Comparative LCA Studies
Structural Performance Testing

The experimental research will consist of three major phases:

- **Phase 1**: Pushout Testing
 - Characterize interfacial mechanical fastener behavior

- **Phase 2**: Beam Testing
 - Demonstrate member-level behavior

- **Phase 3**: Connections
 - Demonstrate connection behavior

All experimental testing will focus on US-based materials (Steel, CLT, Mechanical fasteners) and construction practices.
Phase 1: Push-out testing

Specimen Design Parameters

- **Anchor types**
 1. Self-tapping screw (full vs. partial thread)
 2. Lag screws
 3. Threaded bolts

- **Panel Properties**
 1. Grain orientation (⊥, //)
 2. Thickness (3-5-7 plies)
 3. Layup (alt, maxx)
Phase 1: Push-Out Tests

Pushout Test Outcomes:
- Failure mode
- Strength (timber vs. fastener)
- Stiffness (initial and pre-peak)
- Slip Capacity (ductility)
- Force vs. deformation (slip) response

![Graph of force vs. deformation](image-url)
Phases 2: Member-Level Testing

Test Outcomes:

- **Flexural strength**
 Evaluating the applicability of existing design methodologies
- **Composite action (full vs. partial)**
- **Stiffness / Serviceability**
- **Shear strength**
- **Ductility (deformation capacity)**
- **CLT effective width**

[Image of a structural testing setup]
Phases 3: Member-Level Testing

Connection tests:

• Panel adjoining methods
 ▫ Splines
 ▫ Lap joint
 ▫ Continuity Plates

• Connections
 ▫ Shear-resisting
 ▫ Moment+Shear Resisting

• Positive & Negative moment transfer

Courtesy of Valipour et al.
Benchmark Studies: Schedule, Cost, LCA

Design of buildings according to IBC 2021 with different stories using:
- Steel-Concrete (Composite Concrete Floor)
- Steel-Timber (Composite Timber Floor)
- Reinforced Concrete

<table>
<thead>
<tr>
<th>Building Type</th>
<th>Type IV-C</th>
<th>Type IV-A</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Stories</td>
<td>7-story (9)</td>
<td>18-story (18)</td>
</tr>
<tr>
<td>Building Height</td>
<td>84 ft (85 ft)</td>
<td>216 ft (270 ft)</td>
</tr>
<tr>
<td>Column Spacing</td>
<td>30 ft</td>
<td>30 ft</td>
</tr>
<tr>
<td>Floor Area (ft²)</td>
<td>44,100 (45,000)</td>
<td>44,100 (54,000)</td>
</tr>
</tbody>
</table>

7-Story Building 18-Story Building
Benchmark Studies: Schedule, Cost, LCA

Study Parameters:

- **Location**
 - Seismic-controlled region (LA)
 - Wind-controlled region (NYC)

- **Lateral Force Resisting System**
 - Moment-resisting frame
 - Braced or Shear Walls

- **CLT Layers (3- 5- 7-Ply)**
 - Topping layer for fire, acoustic, vibration considerations

- **Level of composite action**
 - Partial vs. Full CA

- **Inclusion of foundation**
Benchmark Studies: LCA Outcomes

- Focus on the impact of structurally utilizing the composite behavior
- Cradle-to-grave LCA studies using different software/database
 - Tally/GaBi
 - Athena/Athena
 - One-Click LCA/EU Databases
- Expected life cycle analyses outputs
 - Potential global warming impact
 - Total embodied energy
 - Stage specific life-cycle energy
 - Combined life-cycle energy
- Sensitivity analysis

Source: Life Cycle Assessment of Buildings: A Practice Guide
Benchmark Studies: Constructability

• Cost Studies
 ▫ Material cost
 ▫ Labor cost
 • Construction crew size
 ▫ Prefabrication

• Schedule Duration Studies
 ▫ Prefabrication
 ▫ Formwork elimination
 ▫ Erection
 • Ease of installment using small crane
 ▫ Shoring
 ▫ Camber

Courtesy of ARUP
Current Progress / Expected Future Timeline

- Structural Performance Demonstrative Testing
 - Pushout Tests – Ongoing
 - Beam Tests – Summer ‘22
 - Connection Tests – Fall ‘22

- Sustainability & Constructability
 - Benchmark Building Designs - Ongoing
 - Concrete – Completed
 - Timber/Steel – Summer ‘22
 - Concrete/Steel – Summer ‘22
 - Construction Schedule/Cost – Fall ’22
 - LCA – Fall ‘22

Courtesy of ARUP
THANK YOU!

FUTURE: Expanding Mass Timber for Protective Structures

Upcoming AU project with US Air Force on advancing use of mass timber for protective designs

- Hybrid panels
- Projectile/debris protection
- Blast loads
- Connection design
- High strain-rate material characterization

References

Continue the Conversation

sener@auburn.edu | dbr0011@auburn.edu

Funding Acknowledgement

© Council on Tall Buildings and Urban Habitat