De Karel Doorman, Rotterdam: An Ultra-Lightweight Vertical Extension Using Steel Beams and Stud Walls

Maurice Hermens
Leading Professional, Royal HaskoningDHV
De Karel Doorman, Rotterdam

An Ultra-Lightweight Vertical Extension Using Steel Frame and Timber Floors

Maurice Hermens
Leading Professional Structural Design
Advanced Technology & Research
24 May 2022

CTBUH 2022 Steel-Timber Hybrid Buildings Conference
Involved Companies

Owner: Private owners (Owners’ Association)

Client: DW Nieuwbouw; WM Projectontwikkeling

Architect: Ibelings Van Tilburg Architecten

Structural Engineer: Royal HaskoningDHV

MEP Engineer: Wichers & Dreef

Contractor: Van Wijnen

Consultant Acoustics: Peutz Associes

Consultant Fire Safety: Peutz Associes

Structural steel structure: Oostingh

Structural timber: Forger Houtconstructies; Heko Spanten

See also: https://www.skyscrapercenter.com/building/de-karel-doorman/5562
2002 - Architect’s question: “Can we do this?”
Functional Design

- 16 / 7 / 13 stories
- 105 apartments
- Multiple functions in existing building
 - Entrance
 - Parking
 - Shops
Functional Design

9e verdieping woongebouw met appartementen van 44,5 m² t/m 124 m² bvo

10e verdieping woongebouw met in het midden de gemeenschappelijke daktuin
Existing Building

Existing shopping Mall ‘Ter Meulen’
Realized between 1948 and 1951
Architect: Van den Broek & Bakema
Expansions

1948-1951
Concrete floor

Late 1970s
steel/concrete

2002-2012
Steel-Timber 250 kg/m²
Building System

- Steel braced frame
 - HE.. columns and beams, fire proofing
 - Strip steel diagonals
 - Square tubes as vibration blockers
- Timber floor with screed, on dampers
 - LVL beams 2 x 45x225 mm in both directions
 - Multiplex plates
 - Screed 55mm
- Metal stud walls, separated
 - Cold formed thin walled profiles
 - Double gypsum board
 - Insulation
- Suspended ceiling
 - Cold formed thin walled profiles
 - Double gypsum board
Fire Safety

- Fire resistance of main load bearing structure 120 minutes
- Fire proofing by fire proofing board around steel structure
- Fire resistance between apartments 60 minutes
 - Double gypsum board 12mm
- Escape Routes to concrete cores
Acoustic Isolation Between Apartments

- High requirement between apartments
- Acoustic separation of apartments
 - Floors on 25 mm CDM rubber dampers
 - Double separated walls
 - Suspended ceilings
- System tested in laboratory
Footfall Vibrations

- Own vs neighboring apartment
- Perception / nuisance
- Target values
 - 1.6 mm/s vs
 - 0.1-0.2 mm/s
Modelling, Testing & Calibration

Dynamic behaviour depends strongly on dynamic properties
- Dynamic damping ratios
- Dynamic behavior of
 - connections/nodes
 - interior walls and ceilings

Approach (in collaboration with TNO, Delft (NL))
- 3D dynamic FEM analyses
- Dynamic measurements in test apartment
- Calibration of FEM model
- Design adaptations
Modelling, Testing & Calibration
Results

Design adaptations
- Own apartment: reduce vibration level
- Neighboring apartment: energy transfer block

Results
- High level of comfort
- Sound isolation
- Low transfer of vibrations
- Sense of ‘concrete building’
Wind Vibrations

- Concrete cores
- Steel braced frame
- Most important parameters
 - Stiffness
 - Mass
 - Damping
 - Used materials
 - Friction details designed
Friction details
Balconies, facades and roof garden
Considerations and outlook

Considerations
- Prevent added mass to the timber and steel structure

Outlook/recommendations
- Research into more generally applicable ultra-light weight structures in steel-timber hybrids
- Validation & Calibration of Design is important to guarantee quality
- Develop design guidelines